首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3214篇
  免费   923篇
  国内免费   1573篇
测绘学   52篇
大气科学   1034篇
地球物理   495篇
地质学   1933篇
海洋学   1229篇
天文学   28篇
综合类   247篇
自然地理   692篇
  2024年   10篇
  2023年   52篇
  2022年   94篇
  2021年   129篇
  2020年   131篇
  2019年   154篇
  2018年   151篇
  2017年   162篇
  2016年   155篇
  2015年   197篇
  2014年   241篇
  2013年   280篇
  2012年   233篇
  2011年   256篇
  2010年   197篇
  2009年   267篇
  2008年   273篇
  2007年   276篇
  2006年   290篇
  2005年   220篇
  2004年   243篇
  2003年   192篇
  2002年   208篇
  2001年   143篇
  2000年   147篇
  1999年   158篇
  1998年   136篇
  1997年   143篇
  1996年   111篇
  1995年   94篇
  1994年   74篇
  1993年   62篇
  1992年   60篇
  1991年   45篇
  1990年   32篇
  1989年   33篇
  1988年   19篇
  1987年   14篇
  1986年   4篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1954年   2篇
排序方式: 共有5710条查询结果,搜索用时 15 毫秒
91.
通过综合分析有关文献资料,提出了东海表层各个水团的温、盐指标并把它们分成3个水系(沿岸水系、混合水系和黑潮水系)。把1999年7月和2000年2月的观测结果与历史(1907~1986年的7月和2月)平均值比较后发现:1999年7月,东海表层水团及台湾暖流北上势力弱于历史平均状况,但它们朝东北方向推进;长江冲淡水的外侧部分在济州岛西南具有朝东南方向伸展的特征。2000年2月,黑潮入侵势力强于历史平均状况;黄海水团入侵东海的势力不大;与10~14℃等温线组成的浙江沿岸温度锋相对应,盐度锋不明显。根据东海各水团的温、盐判别数据,将实测资料和历史平均值资料进行对比,可判别各水团的分布和变化特征。  相似文献   
92.
本文分析了东、黄海典型海区3个测站在2000~2003年间4个航次的叶绿素a周日变动特征,结果表明由于地理环境、水文特征以及季节差异,各海区叶绿素a表现出各自不同的变动特点.在东海陆架区,日变化上表层各粒级主要以半日周期为主,受黑潮入侵程度不同而略有变化;长江口由于受到潮汐的影响,各粒级的日变化同潮汐的涨落相对应,主要为半日周期;黄海中部海区叶绿素a尤其是NANO级浮游植物在周日变化上以全日周期为主,受黄海冷水团强弱不同而不同.本文进一步应用渐近回归初步分析了多种环境因子对叶绿素a周日变化的影响.  相似文献   
93.
海中悬移质是决定海洋光学性质、海洋水质,河口海岸带演变动力过程的重要环境参数。本文利用模拟遥感反射比数据集建立人工神经网络反演悬移质浓度,并利用东中国海现场同步数据对该算法进行验证。  相似文献   
94.
冬季东中国海环流中的中尺度涡旋数值模拟   总被引:5,自引:0,他引:5       下载免费PDF全文
采用高精度的POM模式 ,考虑了海底地形、外来流、长江径流、海面风应力、海面热通量等多方面因素的影响 ,模拟了冬季东中国海环流结构。模拟结果显示 :在黄海东部很可能存在两个涡 ,中心分别在124°37′E ,37°N ,124°E ,35°30′N ;东海北部存在一个大型的气旋式涡旋 ,其中心位置在125.1°E ,30.5°N附近 ,该涡旋是由东北向的台湾暖流、西北向的黄海暖流及南下的沿岸流组成的封闭结构 ;日本九州以西黑潮入侵分支形成一涡旋 ,黑潮分支是形成此涡旋的直接动力因素 ,另外地形和冬季盛行的偏北风也对该涡旋的形成有一定正面影响。  相似文献   
95.
东、黄海海表面温度季节内变化特征的EOF分析   总被引:7,自引:0,他引:7  
基于1998—2004年的TRMM/TMI卫星遥感海面温度(SST)数据,在初步分析东、黄海SST的季节分布特征的基础上,采用EOF方法分析了SST的季节内变化特征,进而对SST季节内变化的可能机制进行了探讨。EOF分析获得的前4个模态的累积方差贡献率为57.07%,其结果基本反映了东、黄海SST变化的主要物理过程。其中,EOF的第一模态的方差贡献率占30.17%,其空间模态揭示了以东海北部为中心的、整个海域SST变化趋于一致的特征,这一模态的显著变化周期为6.3周;第二模态的方差贡献率占14.36%,其空间模态呈现东南海域与西北海域SST的反相变化趋势,显著变化周期为8.7周和10.6周;第三模态的方差贡献率占7.02%,其空间SST变率最大的区域位于黄海海域,显著变化周期为6.8,8.7,10.2周等;第四模态的方差贡献率占5.52%,其空间SST变率最大的区域位于东、黄海近海,显著变化周期为6.8周。东、黄海SST季节内变化与此海区大气中的季节内振荡是紧密相关的。  相似文献   
96.
REEdistributioninwater-sedimentinterfacesystematdeepoceanfloor¥ZhangLijie;LiuJihuaandYaoDe(ReceivedFebruary1,1994;acceptedMay...  相似文献   
97.
The distribution and geochemical composition of suspended-particulate matter (SPM) in the East China Sea (ECS) were investigated during the summer period of high continental runoff to elucidate SPM sources, distribution and cross-shelf transport. The spatial variability of SPM distribution (0.3–6.5 mg l−1) and geochemical composition (POC, Al, Si, Fe, Mn, Ca, Mg and K) in the ECS was pronounced during summer when the continental fluxes of freshwater and terrestrial materials were highest during the year. Under the influences of Changjiang runoff, Kuroshio intrusion, surface production and bottom resuspension, the distribution generally showed strong gradients decreasing seaward for both biogenic and lithogenic materials. Particulate organic carbon was enriched in surface water (mean ∼18%) due to the influence of biological productivity, and was diluted by resuspended and/or laterally-transported materials in bottom water (mean 9.4%). The abundance of lithogenic elements (Al, Si, Fe, Mn) increased toward the bottom, and the distribution correlations were highly significant. Particulate CaCO3 distribution provided evidence that the SPM of the bottom water in the northern part of the study area was likely mixed with sediments originally derived from Huanghe. A distinct benthic nepheloid layer (BNL) was present in all seaward transects of the ECS shelf. Sediment resuspension may be caused by tidal fluctuation and other forcing and be regarded as the principal agent in the formation of BNL. This BNL was likely responsible for the transport of biogenic and lithogenic particles across or along the ECS shelf. Total inventories of SPM, POC and PN are 46, 2.8 and 0.4 Tg, respectively, measured over the total area of 0.45 × 106 km2 of the ECS shelf. Their mean residence times are about 27, 13 and 11 days, respectively. The inventory of SPM in the water column was higher in the northernmost and southernmost transects and lower in the middle transects, reflecting the influences of terrestrial inputs from Changjiang and/or resuspended materials from Huanghe deposits in the north and perhaps from Minjiang and/or Taiwan’s rivers in the south. The distribution and transport patterns of SPM and geochemical elements strongly indicate that continental sources and cross-shelf transport modulate ECS particulate matter in summer.  相似文献   
98.
渤、黄、东海陆架底质的形成分布与末次盛冰期之后的海侵密切相关。末次盛冰期结束、海侵开始以来 ,潮流是渤、黄、东海陆架上的永久性主导作用应力。为从长期沉积动力演变过程的角度 ,探讨渤、黄、东海陆架底质形成分布的有关成因问题 ,利用数值模拟手段 ,再现了末次盛冰期以来 6个时期渤、黄、东海陆架潮流作用下海底的冲淤格局及底质分布。结果表明 ,扬子浅滩南侧东海外陆架的砂质沉积基本上是自 - 80 m海面以来形成的。扬子浅滩形成于 -5 2 m海面之后 ,至 - 3 0 m海面时已有一定规模 ,全新世最大海侵之后 ,逐渐形成现在规模的扬子浅滩。南黄海中部泥自 - 5 2 m海面时就已开始形成 ,- 3 0 m海面时范围很大 ,侵入北黄海 ,全新世最大海侵以来 ,逐渐调整到现在的范围。渤海中央泥、北黄海西部泥、浙闽岸外泥、辽东半岛西侧与北侧的砂质沉积、西朝鲜湾与江华湾中的砂质沉积以及苏北浅滩是自全新世最大海侵以来逐渐形成的。海州湾中砂质沉积形成的盛期在公元 8世纪之后。济洲岛西南泥、南黄海东部泥很可能分别形成于 - 3 0 m海面、- 5 2 m海面以来。全新世渤、黄、东海陆架底质分布的演变过程大致分为 2个阶段 :全新世最大海侵之前为渤、黄、东海陆架底质分布宏观格局的形成阶段 ;全新世最大海侵至今为渤  相似文献   
99.
通过电镜、电子探针和X射线等项分析,对东海沉积物中的有孔虫、腹足类、双壳类、苔藓、珊瑚、海胆等骨屑进行了矿物学研究,确定了矿物成分与生物属种的关系,并基于有孔虫壳体化学成分将壳体分为均质壳和异质壳,生物碳酸盐中镁主要富集在方解石及镁方解石中,锶在方解石和镁方解石中的分配系数(D)相似,为0.11—0.14;在文石质骨屑中D=1.09-1.20。碳氧同位素组成与生物属种有明显关系。据一些有孔虫壳体氧同位素偏差值计算的水温来看,本次测定的有孔虫属种的骨屑不能作为理想的骨屑温度计。  相似文献   
100.
Long-term variability in the intermediate layer of the eastern Japan Basin has been investigated to understand the variability of water mass formation in the East Sea. The simultaneous decrease of temperature at shallower depths and oxygen increasing at deeper depths in the intermediate layer took place in the late 1960’s and the mid-1980’s. Records of winter sea surface temperatures and air temperatures showed that there were cold winters that persisted for several years during those periods. Therefore, it was assumed that a large amount of newly-formed water was supplied to the intermediate layer during those cold winters. Close analysis suggests that the formation of the Upper Portion of Proper Water occurred in the late 1960’s and the Central Water in the mid-1980’s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号